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Introduction 
 

 
 

During my sophomore year of High School, I had a mathematical experience that 

changed my life and perspective on reality. Grant Philips of Reo Mesa High School in Oxnard, 

California began to teach us about imaginary numbers in his Algebra class.  
 

 
 

He drew a line across the chalkboard, called it the real number line, and then did something 

remarkable: he pointed the chalk on the chalkboard perpendicularly away from the real number 

line demonstrating the orientation of how the imaginary number line exists in relation to the real 

number line. Something inside me clicked as I fell in love with abstract mathematics at age 16.   
 

After dropping out of High School during the fall of my junior year and admitting my self 

into the local Community College that spring, an experience in another math class mutated my 

deep interests into willful action. During a college Algebra class, the instructor began to explain 

the definitions of the various types of numbers discussing the subject in reference to figure 1-12 

in our class textbook.  

 
 

Gustafson & Frisk, College Algebra 4th Edition, Brooks/Cole, 1990, p.66, Chapter 1: Basic Concepts; Figure 1-12 

 

It appeared that something was missing from the right-hand corner of this figure that, if included, 

would complete the picture so to speak. I began looking at mathematic as missing something that 

specifically had to do with what made imaginary numbers different from real, rational numbers 

different from irrational, and whatever it is that is missing being different from everything else. 
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1.1- An Infinite Series with an Infinitesimal Final Term 
 

Let there be a sequence with infinite terms; 
 

x1 , x2 , x3 , … , xn 
 

Each term of the sequence is the sum of all subsequent term(s) added to the next 

consecutive term as a series, where each term in the series is some product of 1/2n. The 

first term in x1 corresponds to the first term of the series. 
 

x1 = 1/21 = 1/2 = 0.5 

 

The 1
st
 and 2

nd
 terms in x2 correspond to the first and second terms of the series. 

 

x2 = 1/21  + 1/22  = 1/2  + 1/4 = 0.75 

 

Each term of the sequence x1 , x2 , x3 , … , xn is a partial and finite sum such that each 

consecutive term of a series is half the value of the previous term and each term of the 

sequence is closer to 1.0 than the previous term of the sequence. 

     

x1 = 1/21 = 1/2 = 0.5 
 

x2 = 1/21  + 1/22  = 1/2  + 1/4 = 0.75 
 

x3 = 1/21  + 1/22  + 1/23 = 1/2  + 1/4 + 1/8 = 0.875 

 

x4 = 1/21  + 1/22  + 1/23  + 1/24 = 1/2  + 1/4 + 1/8 + 1/16 = 0.9375 

 

etc. 

 

xn = 1.0 

 

 

At the end or limit of the infinite sequence, the final term of the sequence is 1.0 
 

xn  = x1 + (x2 - x1 ) + (x3 - x2 ) + … + (xn - xn-1 ) = 1.0 
 

 

  xn = 1/21  + 1/22  + 1/23  + 1/24  + … + 1/2n  =  1.0 

 

      = 1/2  + 1/4  + 1/8  + 1/16  + … + 1/2n  =  1.0 

 

 

 In this example we can see that as the number of finite sums of the sequence approaches 

the limit infinity, the last term of the sequence equals one.   

 

xn  =  1.0 
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If we are going to assume that the last term of the sequence equals one, it can be deduced 

that, prior to the last term in the sequence, some finite sum in the series occurs where: 

 

xn-1  =  0.999… 
 

xn-1  = 1/21  + 1/22  + 1/23  + 1/24  + … + 1/2n-1  =  0.999… 

 

Therefore, at the limit, the last term of the series of the last term of the sequence would be 

the term, which, when added to the sum 0.999… equals 1.0  

 

 xn =  x1 + (x2 - x1 ) + (x3 - x2 ) + … + (xn - xn-1 ) = 1.0 
 

     =  1/2 + 1/4 + 1/8 + … + 1/2n  = 1.0 
 

     =  0.999… +  1/2n  = 1.0 
 

     =  0.999… +  some infinitesimal  = 1.0 

 

Assuming that a finite number raised to the power of infinity is an infinite quantity, it is 

deducible that the reciprocal is an infinitesimal quantity.  Therefore, we will let the last 

term in the series ( 1/2n where n is infinite) equal some infinitesimal quantity.      

 

1/2n = (xn - xn-1) = (1.0 - 0.999…) = some infinitesimal. 

 

 

1.2- Degrees of Infinity 

Take note that the inverse of the last term is 2n.   

 

[1/2n ] -1  = 2n 

 

Since 2n is the power set of n we will now raise the question whether or not the power set 

of an infinite set is greater than or equal to the original set?  
 

Either: 
 

1/2∞  = 1/∞, and 2∞ = ∞  
 

or:  
 

1/2∞ < 1/∞, and 2∞ > ∞ 

 

 

Let there exist at least two degrees of infinity. The least degree of infinity is the set of all 

countable numbers, say the set of all natural numbers: 
 

{ 1, 2, 3, … , n } 
 

 The greater degree is the continuum, or set of all countable and uncountable numbers. 

 

C {  n} 
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The set of all countable numbers, or natural numbers, is a subset of the continuum.   

Since the set of all natural numbers is a subset of the continuum, it is reasonable to 

assume that the set of all natural numbers is less in degree of infinity than the set 

containing the continuum.   

However, it does not follow that the power set of the set of all natural numbers has the 

same degree of infinity as the continuum, since this would leave only two degrees of 

infinity.  It might be more intuitive to assume that there are infinite degrees of infinity, as 

there are infinite finite numbers, than to presume a finite degree of infiniteness.  Why 

would there be less degrees of infinity than number of finite numbers? 

  

Let the set of all natural numbers be denoted as 0א: the first infinite or cardinal number.  

Let the next hypothesized cardinal number be denoted as 1א.  We will entertain the 

possibility that 1א is a third degree of infiniteness and that there could be אn degrees of 

infiniteness. 

 

The power set of the set of all natural numbers has one of the following three solutions: 

 

 1). The power set of 0א equals the set of all natural numbers: 

 

   
 

 2). The power set of 0א equals the set of the continuum: 

 

   
 

3). The power set of 0א equals some intermediary infinite set that is greater than 

the set of natural numbers but is less than the set of the continuum: 

 

 C >  1א                                                      

 

To determine if the power set of the natural numbers is greater than or equal to the set of 

the natural numbers, or if the power set of the natural numbers is the set of the 

continuum, we will algebraically examine them in relation to one another.   
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Assuming that if: 

 

 C > 1א  C   and ≠ 1א 

 

and that: 

 

  
 

Either: 

 

  ,C, and there really is only one degree of infinity = … = 4א = 3א = 2א = 1א = 0א

 

or: 

 

 C, and there are infinite degrees of infinity, with the > … > 4א > 3א > 2א > 1א > 0א

continuum being the greatest. 

 

If we subtract (or add) a finite quantity with an infinite quantity, it can be shown that the 

infinite quantity is still the same quantity.  For instance, imagine a line that is infinitely 

long. Assume it has a length the size of the set of all natural numbers. 

 

 

 

 
 

 

If we were to subtract from the left side of this line, say five units, our line would start 

with 6 and continue from there.  We could still make a 1-1 correspondence between our 

new line and the original line, such that 6 corresponds to 1, 7 corresponds to 2, 8 

corresponds to 3, 9 corresponds to 4, etc. 

 

 

 
 

 

 

Therefore it can be shown that both lines contain the same infinite units of numbers, 

namely 0 א. 
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Also, raising the set of all natural numbers to the power of a finite number does not 

increase the number of members of that set.  For example, if we square the line and turn it 

into a plane, we can see that though there is an added dimension through which quantities 

can arise, we can still make a 1-1 correspondence between the plane and the original line. 

 

  
 

 

  
 

Again, if we cube the original line, we can still make a 1-1 correspondence between the 

three dimensions and the original line. 

 

 

  
 

 

  
 

So, more or less, it can be argued that: 
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and, 

  
(where n is a finite quantity) 

 

However, the extreme difference between finite and infinite quantities is so vast that one 

could not expect that an infinite raised to the power of a finite could yield the same 

results as raising an infinite to an infinite power, such as: 

      =  ?  =       

 

Similarly, it does not seem intuitive that the power set of an infinite set, such as the set of 

all natural numbers, would have the same number of members as the original set when 

even finite power sets contain more members than the original set itself.  It is inherent to 

the definition of what it is to be a power set that a power set contains more members than 

the original set.  Therefore, it also does not intuitively deduce that: 

 

   
 

1.3- Infinitesimals as reciprocals for Degrees of Infinity 

A deeper examination of attempting to algebraically define the relationship between 

infinites and infinitesimals reveals something that serves as a resolution to the 

aforementioned issue at hand. 

 

Referring back to the infinite sequence of terms, we will assume: 
 

  1 ≠ 0.999… 
 

  1 = 0.9 + 0.1 

  1 = 0.99 + 0.01 

  1 = 0.999 + 0.001 

  1 = 0.9999 + 0.0001 

   etc. 
 

  1 = 0.999…  +  …1 ,  (where …1 is some infinitesimal quantity,  

      and 0.999… is some quantity infinitesimally  

      smaller than 1) 

 

Let κ be substituted for this infinitesimal quantity …1 such that: 
 

   κ = …1 

     

 1 = 0.999… + …1 

 

  1 = (1- κ) + (κ) 
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Let κ have the property of being a ‘smallest possible quantity greater than zero’, such 

that: 
 

 1 / ∞ = κ, 1 / κ = ∞,  κ × ∞ = 1, ∞ / ∞ = 1, κ / κ = 1 
 

Replacing א for ∞, let א have the property of being a ‘greatest possible quantity’, so that: 
 

 κ / κ = 1 ,1 = א / א ,1 = א × κ  ,א = κ, 1 / κ = א / 1 
 

To avoid the regular arguments which dismiss the consistency of the concept of 

infinitesimals in mathematics, we will assume that κ is a set of infinitesimals such that 

any conceived quantity smaller than κ and greater than 0 is a member and/or subset of κ.   
 

κ {  κ0 , κ1 , κ2 , κ3 , κ4 , … , κn  }  where κn ≥ 0   and  κn-1 > κn   
 

κ0 is some infinitesimal quantity whose value is the least lower bound of the set of 

infinitesimals κ, and, at the limit, κn is some infinitesimal quantity whose value is the 

most lower bound of the set of infinitesimals κ. 
 

κ {  κ0 → κn } 
 

We will assume that א is a set of infinites or cardinal numbers such that any conceived 

‘greatest possible quantity’ that is infinite and less than C, where C is the continuum, is a 

member and/or subset of א.  
 

  n א > n-1 א      n < C *    and א where  {  n א , … , 4 א , 3 א , 2 א , 1 א , 0 א  } א
 

*  C  cannot be a member of the set א because C   

is the greatest of all sets and א is a subset of C.  
 

 is some infinite quantity whose value is the least 0א is the set of all natural numbers and 0א

upper bound of the set of infinites א, and, at the limit, אn is some infinite quantity whose 

value is the most upper bound of the set of infinites א. 
 

  { n , … ,4 ,3 ,2 ,1 } 0 א where  { n א → 0 א  } א

 

1.4- Roots of Infinites and Infinitesimals 

Let  and  be extra-finite quantities that intermediate between the finites and the 

infinites (), and between the finites and the infinitesimals ().  

 

 is the set of roots for κ0.  

 

 {  0 , 1 , 2 , 3 , 4 , … , n  } where n ≤ 1    and n-1 < n    

 

Let the square root of κ0 be some extra-finite quantity 1, where:  

 

0 = κ0
1 , 1 = κ0

1/2 , 2 = κ0
1/3, etc. 

 

  
 



 11 

 is the set of roots for 0 א.   

 

 {  0 , 1 , 2 , 3 , 4 , … , n  } where n ≥ 1    and  n-1 > n    

 

Let the square root of 0 א be some extra-finite quantity 1, where:  

 

0 = 0 א
1 , 1 = 0 א

1/2 , 2 = 0 א
1/3, etc.    

 

 
 

Assuming that 0 through n are reciprocals of 0 through n for all  and , we find: 

 

1 /  0 = 0 , 1 / 0 =  0 ,  0 ×  0 = 1,  0 /  0 = 1, 0 / 0 = 1 

 

1 /  n = n , 1 / n =  n ,  n ×  n = 1,  n /  n = 1, n / n = 1 

(see Appendix) 

 

Though  and  are extra-finite, since they exist nearer to the infinites and infinitesimals 

more than ordinary finite numbers and give that 0 = κ0  and 0 = 0 א, we will assume: 

 

 0 א  ≈  0 א  × 0 א since  ;0 א ≈  0 × 0 א  κ0 = 1 × 0 א 0 = 1;    since × 0 א

 

 0 א  =    1  × 0 א since  ;0 א =  n × 0 א  0 א = 1 × 0 א since  ;0 א = n × 0 א

 

 

We will refer to the infinites, infinitesimals, and extra-finites as transfinite quantities 

collectively speaking.  

 

1.5- Arithmetical Treatments of Infinites and Infinitesimals 

With a calculator, or a pen and much scratch paper, one can obtain the following results: 

 

             √1 = 1 

             √2 ≈ 1.41… 

             √3 ≈ 1.73… 

           √√4 ≈ 1.41… 

         √√√6 ≈ 1.251… 

         √√√√√√√14 ≈ 1.0208… 

              √√√√√√√√√√√√√√√30 ≈ 1.000104… 

 √√√√√√√√√√√√√√√√√√√√√√√√√√√√√√134 ≈ 1.00000000456… 

 

If you carry out an excess of square roots upon any quantity, the results are all the same: 

the quantity goes towards one plus some very small decimal number. 
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If one examines a graphic representation of exponential curves, it can be shown that any 

quantity greater than zero, raised to the power of zero, equals one.  Looking at the same 

graph, it can be argued that any quantity greater than zero, raised to the power of a ‘least 

possible value greater than zero’, equals one and some addition (or subtraction) of a very 

small quantity.  

 

 

 
 

It can be hypothesized that any finite quantity greater than one raised to the infinitesimal 

root equals one plus some infinitesimal: 
 

∞√n  = nκ = 1 + κ  where   n > 1 + κ 

(see Appendix) 

 

 

 

Assume: 
 

 nκ > n0 > n-κ, where n is any finite number greater than 1,  

 

  nκ < n0 < n-κ, where n is any finite number greater than 0 and less than 1. 
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Let: 
 

 ∞√n  = nκ = 1+ κ, n0 = 1,  -∞√n  =  n-κ = 1- κ, when nκ > n0 > n-κ 
  

 and 
 

 1- κ = 0.999…, where 0.999… is the least number greater than 1.   
 

It follow that either: 
 

 (a) ∞√∞  =  1 + κ 

 

 (b) ∞√∞  =  ∞ + κ  =  ∞ 
 

 

 

Before we solve for (a) or (b) we must first continue to define κ0 and 0 א algebraically. 
 

Let: 

 κ0 + κ0 = 2κ0 

 κ0 + κ0 + κ0 = 3κ0 

 κ0 + κ0 + κ0 + κ0 = 4κ0 

  etc. 

 κ0 + κ0 + κ0 +…+ κ0 = ∞ × κ0 = 1 
 

Let: 

 κ0 × κ0 = κ0
2 

 κ0 × κ0 × κ0 = κ0
3 

 κ0 × κ0 × κ0 × κ0 = κ0
4 

  etc. 

 κ0 × κ0 × κ0 ×…× κ0 = κ0
∞ = κ1 

 

Let: 

 0 א 2 =  0 א + 0 א  

 0 א  3 = 0 א + 0 א + 0 א 

 0 א 4 =  0 א +   0 א +  0 א + 0 א 

  etc. 

0 א = 0 א × 0 א = 0 א +…+  0 א + 0 א + 0 א 
2 

Let: 

0 א = 0 א × 0 א  
2 

0 א = 0 א × 0 א × 0 א  
3 

0 א = 0 א × 0 א × 0 א × 0 א  
4 

  etc. 

0 א = 0 א ×…× 0 א × 0 א × 0 א 
 1 א = ∞

 

(From here on, let ∞ be synonymous with 0 א.) 

 

Dismissing (b) as the solution and choosing to go with (a), ∞√∞ = 1 + κ , we find: 
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1.6- Range of Value 

If we treat the equation ‘∞√∞ = 1 + κ’ algebraically, we find: 

 
∞√∞ = 1 + κ    

 

    ∞  =  (1 + κ) ∞  

 

Substituting 0 א for ∞, if we attempt to factor out the equation we find a 

minimum, mean, and maximum range of solutions. These varying solutions are derived 

by applying algebraic rules to the foregoing definitions of the infinites and infinitesimals. 
 

 (1 + κ0)
 0 = 1 

 

 (1 + κ0)
 1 = 1 + κ0 

 

 (1 + κ0)
 2 = 1 + 2 κ0 + κ0

2 
 

 (1 + κ0)
 3 = 1 + 3 κ0 + 3 κ0

2 +  κ0
3 

 

 (1 + κ0)
 4 = 1 + 4 κ0 + 6 κ0

2 + 4 κ0
3 +  κ0

4 
 

   etc. 
 

Examining the terms in our series as it approaches 0א, we discover that there are multiple 

ways of factoring an answer. Examining the final terms of the sequence first running the 

summation sequence in a reverse direction, opposite from usual, we can get: 
 

 

  
     

  
 

  
 

  
 

In the same way that subtracting finite quantities from infinite quantities does not change 

the overall quantity of the infinite, adding two infinitesimal does not seem to really 

increase the value; you still have an infinitesimal quantity, such that: 
 

 2κ0
 
 ≈ κ0 .   

 

Similarly, raising an infinitesimal to the power of a finite does not really change its value:  
 

 κ0
2 
 ≈ κ0.   

 

Therefore the minimum solution is: 
 
  

= 1 + { κ0
 
 + κ0

 
 + κ0

 
 +…} 

 

    = 1 + some infinitesimal quantity > κ0 
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If we recall that we have presumed the definition: κ0 × 1 =  0א, we can get a mean solution: 
 

   = 1 + { κ0
 
 + κ0

 
 + κ0

 
 +... } 

 

 1 + 1 = { κ0 × 0א } + 1 =   
 

   = 2 
 

However, if we run the summation in the regular direction we find: 
 

κ0 0א + κ0 0א + 1 =   
κ0 0א + 2

3 
κ0 0א +

4 
 + … 

 

   
 

   = 1 + 1 + 1 + 1 + 1 +… 
 

 0א =   
 

Thus, for this equation, there is a minimum, mean, and maximum solution depending on 

how you factor and run the summation of the terms generated. 

  Minimum: = 1 + some infinitesimal quantity > κ0 
 

   Mean:  = 2 
 

   Maximum: = 0א 
 

If it can be determined that a quantity is either infinite or infinitesimal, it can be shown 

that when treated algebraically it exhibits a property of having a range of value rather 

than a specific value.  Therefore, if a quantity is infinite or infinitesimal in nature, and 

that quantity exists over a range between a minimum (compressed) form and a maximum 

(expanded) form, then the quantity perambulates on the continuum. 
 

Compression of addition of initial infinitesimals yields an expanded initial infinitesimal: 
 

   where  is the expanded form of κ0. 

 

Expansion of addition of initial infinitesimals yields one: 
 

 κ0 + κ0 + κ0 + κ0 + … = 1 

 

 

Compressed form of the initial infinite set; the set of all natural numbers: 
 

   where 0 א is { 1 ,2 ,3 ,4 , …} 
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1.7- Perambulation 

Infinite and/or infinitesimal quantities exhibit the property of perambulating along a 

range of possible values; between a minimum compressed form and a maximum 

expanded form depending upon how the infinite and/or infinitesimal quantities are treated 

algebraically. 
 

Therefore, the following states: 
 

  
  

“The equation  perambulates over the range of  and  

where    is the minimum term, and    is the maximum term.” 
 

In other words, a finite number greater than one, less than two, when raised to the power 

of 0 א in compressed and expanded forms, perambulates between two plus the expanded 

form of the initial infinitesimal and the compressed form of the set of all natural numbers.   
 

  
 

erThTrehT, א  0, the set of all natural numbers, is the initial infinite or cardinal number 

whose quantity ranges (perambulates) between a compressed and expanded form. 
 

  
 

We will let the power set of the compressed form of the initial infinite number be the 

expanded form of the same, a finite number greater than or equal to two, when raised to 

the power of the compressed form of 0 א, equals the expanded form of 0 א, and since each 

consecutive infinite is dwarfed by the next in a similar way that finites are dwarfed by 0 א, 

we will assume: 
 

        
 

Thus, the expanded expression of 0 א perambulates between the power set of 0 א 

compressed and 0 א compressed raised to the power of 0 א compressed. 
 

  
 

Therefore, we will redefine the powerset of the set of all natural number from: 
 

    into:   
 

The powerset of the expanded form of the set of all natural numbers 0 א is the compressed 

form of the next consecutive infinite or cardinal number 1 א. 
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1.8- Reciprocating Perambulations 

Maintaining a consistency with the algebraic relationships between expanded and 

compressed forms of infinite and infinitesimal quantities, we find the following 

expressions to be consistent: 
 

 
 

 

1.9- Arithmetical Treatments of Perambulations 

Treating these definitions algebraically, we get: 
 

  
 

 

Given that the mean solution is: 

 

  
 

 

We can also derive the solutions that: 
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Therefore we will assume: 
 

  
 

1.10- Subambulation 

Since, in both examples, it is not specified whether or not the κ0 in ( 1 + κ0 ) should be an 

expression of a compressed or expanded form, and since  represents 

the range between compressed and expanded forms of κ0, we will assume: 
 

  
 

 
 

Using a concept of sublet ambulations, denoted by a “+” or “-“ sign, we can derive that:   
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                   (see Appendix) 

 

This leads us into allowing for an endless progression and regression of subambulations 

of each compressed and expanded form.  

 

 

                 
 

 

 

Let “+” or “-“ denote an endless progression (+) or an endless regression (-) of sublet 

perambulations (subambulations) where the maximum and minimum terms are expressed 

as the progressively most upper-bound (+) or regressively least lower-bound (-) 

expression of all possible subambulations. 

(see Appendix) 

 

Subambulations are derivable for all infinites, infinitesimals, and extra-finite quantities 

such that they allow for an ordered accounting of the reciprocities between the infinites 

and infinitesimals and the reciprocal relationships within the extra-finite quantities.* 
 

*It must be noted that because of the infinite potential of diversity in the 

ambulations of transfinite quantities, there exist algebraic expressions with 

solutions that exist between the expressions we specifically need for our purposes 

and that are not possible to solve for without difficultly in deriving needless 

correct solutions. These are not indeterminate rather inconvenient. 

 

 Example:   
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In carrying out the permutations of subambulation, if we let subambulations that share the 

same degrees of “+” and “-“, regardless of order of appearance (since we are dealing with 

sets), we can say that they overlap and are the same subambulation. In doing so the order 

of subambulation follows a Pascal’s triangle pattern where each level of subambulation 

configures to corresponding levels of a Pascal’s triangle. 
 

1.11- Ambulation 

It has be shown that together both perambulation and subambulation maintain consistent 

arithmetical treatments of infinites with infinitesimals having reciprocal relationships. 

Perambulation and subambulation are dual aspects of ambulation, the variable range of 

communicable values derived when treating infinites with infinitesimals algebraically.  

The idea of perambulation arose from the binomial function (a + b)n, where a = 1, b = κ0, 

and n = 0א, and the idea of subambulation follows the number sequence of Pascal’s 

triangle. Thus both reveal an underlying pattern of consistency with conventional 

arithmetic. Ambulation allow infinites and infinitesimals to be treated algebraically as 

specific values using functions that equal sets of possible values where each member of 

each set accounts for different specific ambulations and reciprocations thereof. 
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Equivalences can be derived between the greatest subambulation of a compressed 

perambulation, the least subambulation of the expanded perambulation, and the initial 

ambulating quantity. 

 

  
 

The infinite relationships between the perambulations/subambulations of each infinite 

and each infinitesimal is another degree to ambulation that shall be call an ensembulation. 

An ordered sequence of ensembulations shall be called a compulation. 
 

An ensembulation is the collective expression of some transfinite quantity whose value 

ambulates over a range of possible expressions between a variety of degrees of 

minimum/maximum compressed and minimum/maximum expanded forms. 
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A compulation is an ordered series of transfinite numbers ranging from an initial to a 

final value where the range of quantities encompass an enembulation of ambulations; 

such as the range from the least upper bound infinite 0א (the set of all natural numbers) to 

the most upper bound infinite אn (the power set least the set of the continuum)*.   
 

*The continuum cannot be a member of the cardinal continuum  

because the cardinal continuum is a subset of the continuum. 
 
 

 

 
 

 

 

The gelatinous nature of C3 captures the essence of the continuum incorporating the 

concept of ambulation through the definitions of perambulation, subambulation, 

ensembulation, and compulation that later have applications in Non-Standard Analysis 

and Infinitesimal Calculus. We can define the infinitesimals, finites, extra-finites, 

infinites, and zero in terms of a continuum ranging from the minimum compressed form 

of the continuum to the maximum expanded form of the same.   
 

1.12- Central Core Values and Super Order 

Central core values are terms that off-shoots from a ambulation of a transfinite number 

that, when treated algebraically, exhibit mathematic logical consistency. A transfinite 

term can be used algebraically if and only if the transfinite term is a central core value 

and/or the origin of a particular ambulation such as the transfinites we have used in the 

arithmetical treatments. 
 

Not all ambulations of a transfinite quantity, when treated algebraically, easily exhibit 

mathematic logical consistency. Though there exist derivable inexpressive algebraic 

expressions as gaps in completeness, there is an order to this incompleteness that actually 

serves for a particular kind of count-ability. Ambulation deflates the uncountable aloof 

nature of transfinite quantities into being comprehensive ordered sequences. Though we 

cannot account for each and every algebraic expression, we can account for the 

inexpressive algebraic expressions by way of sets of super order.   
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Super order is an unintelligible interval of order which cannot be placed into a 1-1 

correspondence with any countable set, such as the set of all natural numbers, and can 

only be place in a correspondence with the infinite term whose power set is the 

continuum (see section 2.0). 

 
 

Referring to a cardinal continuum, we find an infinitude of infinitesimals, extra-finite, 

and infinite numbers in “both” directions in 1-1 reciprocal relationships with each other 

gapped by intervals of super order. 
 
 

 

 

 
 

 

We also extended the cardinal continuum in another dimension of the reciprocal 

relationships between the perambulations and subambulations of trans-finite numbers. 
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1.13- Defining the Reciprocal of Zero 

However, this leaves us with an inevitable problem: 
 

If we let the final term of set κ be equal to zero, and the final term of set κ is the 

reciprocal of the final term of set א, then what is the final term of set א?  
 

In other words: 
 

 What is the solution to 1/0?     What is the reciprocal of zero? 

 

The answer lies in the fact that as do the infinitesimals, the infinites regress and progress 

indefinitely.  It should follow that, given the ‘indefiniteness’ concerning both infinite and 

infinitesimal numbers, what ever is deduced at one end of the continuum should 

correspond to what ever is deduced as the other end.  So it logically follows that what 

ever is at the end of one side of the continuum should have a reciprocal at the other end.   
 

We already know that given the infinitude of both finite and transfinite numbers, all 

numbers can be accounted for as having a reciprocal.  This leave no other possible 

number as being the reciprocal of zero other than zero itself. In some way, zero is at both 

ends of the continuum, i.e. the continuum in all directions ends at zero. 
 

  
 
 

Like the infinites and infinitesimals, we can induce the idea that zero ambulates with the 

exception that zero ambulates the entire continuum to the extent that zero is the 

continuum.  This is not to say that there are two zeros, but rather that in two separate 

ways, zero exists at both extreme ends of the continuum as one end. We will differentiate 

zero on the infinitesimal end of the continuum from zero on the infinite end of the 

continuum where 0c represents the compressed or common form of zero, and 0e 

represents the expanded or infinite form of zero.  
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1.14- Un-ordinals and the Non-set 

 

Let us assume for now: 
 

 0 x 0 = 0 1 x 0 = 0 0/1 = 0  0/n = 0 
 

 0/0 = 1  1/0 = 0  n/0 = 0 
 

If we begin to play with the definitions algebraically, we quickly find some apparent 

problems such as false equalities: 
 

 0/0  = 1 

 0/0  =  0 x 1/0  = 1 

        =  0 x   0   = 1 

        =      0       = 1 

                      0 = 1 

 

Or even more simply by using substitution: 
 

 1/0 = 0 
 

 1    = 0 x 0 
 

Where n is any given number, we end up with the additional apparent problem of: 
 

 n/0 = 0 
 

 n    = 0 x 0 
 

When zero is treated algebraically, it can be used to derive any number or false equality. 

What at first appears to be a contradiction becomes the key to the final part of the 

solution to the continuum hypothesis.  When put this into an ordered sequence, we get: 
 

 0/0 = 0 x 0 = 0 
 

 0/0 = 0 x 0 = 1 
 

 0/0 = 0 x 0 = 2 
 

         etc. 
 

 0/0 = 0 x 0 = n 
 

Thus, the product of zero multiplied by itself and/or divided by itself derives any possible 

number.  Here, we come to a new concept of the set of un-ordinals: a non-set of 

nonsensical false equalities and indeterminate forms that, as a background set of rejects 

excluded from the continuum, serve as a collecting bin of mathematical impossibilities. 
 

For every ordinal there is a continua of un-ordinals and there are no countable sets of un-

ordinals. Let the set of un-ordinals be expressed existing as the non-set lying outside the 
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set of all numbers as though through a “back (hidden) channel” between the expanded 

expression   0e and the compressed expression 0c: 

 

 
  

The un-ordinals can be expressed through ordered sequences of false equalities. Recall: 

 

 0/0 = 0x0 = 0 

 0/0 = 0x0 = 1 

 0/0 = 0x0 = 2 

 0/0 = 0x0 = 3 

      etc. 
 

Let this series be a subset of the un-ordinals. The number of un-ordinals is uncountable 

and they exist outside the sets of the real, hyper-real, ordinal, et al. There are also false 

equalities which can be placed into a 1-1 with these un-ordinals. 

 

 1+1 = 0   ―   0/0 = 0x0 = 0  1+0 = 0   ―   0/0 = 0x0 = 0 

 1+1 = 1   ―   0/0 = 0x0 = 1  1+1 = 0   ―   0/0 = 0x0 = 1 

 1+1 = 2   ―   0/0 = 0x0 = 2  1+2 = 0   ―   0/0 = 0x0 = 2 

 1+1 = 3   ―   0/0 = 0x0 = 3  1+3 = 0   ―   0/0 = 0x0 = 3 

                     etc.                   etc. 

 1+1 = n   ―   0/0 = 0x0 = n  1+n = 0   ―   0/0 = 0x0 = n 
 

Un-ordinals expressed as nonsensicals or false equalities are solutions to equations that 

are correct solution to incorrect equations and/or incorrect solutions to correct equation, 

such that no other equation can give such solution, and no other solution exists for such 

equation, yet it is not commutable between the equation and solution. These make up a 

significant substructure of mathematical reality that can be sequenced as continua subsets 

of the non-set, which later prove to be useful in determining the indeterminate forms. 

 

1.15- Counting the Continuum using Power Sets 

Starting out with the smallest possible member of set κ having an equivalence with 0c, we 

will count the entire continuum from end to end, from zero to zero, we will proceed to 

count through the entire continuum. 
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represents a point of inner-ambulation continuity where the least compressed 

form of a transfinite number equals the least expanded form of the same. Thus, these 

extreme subambulation are also equivalent to the initial:    . 

 

  represents two points of extra-ambulation continuity where the most 

expanded form of an infinitesimal meets the most compressed form of the next.* A single 

point can only be as small as the most lower bound infinitesimals greater than zero, but 

an interval of infinitesimals can be reduced to zero.  

________________________________________________________________________ 

*Infinitesimals are decimal numbers and as roots do not yield power sets where as 

infinites as roots can yield power sets. 
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Therefore, it can be shown that the set , set of all infinitesimals, ambulates over a range 

from the least lower bound infinitesimal set 0 to the most lower bound infinitesimal set 

n; from the initial infinitesimal to the null (empty) set.  Thus, the compressed or 

common form of zero (null set) is a member of the set  as its most lower bound member. 
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Since  is the set of roots for 0, and given that 0 equals 0, it follows that: 

 

 

 
 

 

 

 

 

 

 can be used to account for the continuity between infinitesimal and finite numbers.  It 

is the set of intermediate quantities that range between the most upper bound of the 

infinitesimals and that infinitesimal being raised to smaller and smaller roots.   

 

 

Therefore, it becomes deducible that 0, which equals 0, when raise to an infinitesimal 

enough root equals one; given that smaller and smaller decimal numbers, when raised to 

smaller and smaller roots, yield finite numbers that are closer and closer to one.   
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Therefore, it can be shown that the set , set of all roots of 0, ambulates over a range 

from the most upper bound infinitesimal 0 to one.  Thus, 0 and one are both members 

of the set . 
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Since  is the set of roots for 0א, and given that 0 equals 0א and that n in its expanded 

form equals enT, it follows that: 

 

 

 

 

 
 

 

 

 

 

 

 can be used to account for the continuity between finite numbers and the infinites or 

cardinal numbers.  It is the set of intermediate quantities that range between the least 

upper bound infinite number and that infinite number being raised to deeper and deeper 

roots.  It becomes deducible that 0א raise to an infinitesimal enough root equals one.  

Thus,  approached one from 0 א. 
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It can be shown that the set , set of all roots of 0א, perambulates over a range from the 

least upper bound infinite 0א to one. Therefore, 0א and one are both members of the set . 

 

 

  
 

Finally, it can be shown that the set א, set of all infinites or cardinal numbers, 

perambulates as an ordered series over a range from the least upper bound infinite 

number 0א to the most upper bound infinite number אn.  It becomes deducible that the 

expanded or trans-infinite form of zero is the most upper bound infinite number, it is the 

power set least the set of the continuum, and it is a member of the set א. 
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Since   is the greatest set least its power set C, and since   is the greatest subset of 

C, since C is the greatest set and has no power set, and since C is a power set, it follows 

that the power set of the greatest set least the set of the continuum is the continuum. 
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Therefore, zero ambulates between a compressed common form and an expanded infinite 

form. Zero as a whole, undivided, is the continuum. 
 

  
  
The continuum in power set form ambulates between zero in its differentiated forms as 

the compressed form of the continuum (Cc) and zero as a whole in its undifferentiated 

form as the expanded form of the continuum (Ce). 

 

  
 

  
 

  
 

It has been shown that κ, the set of all infinitesimals, ambulates between κ0, the least 

lower bound of the infinitesimals, and 0c, the compressed or common form of zero. 
 

κ {  κ0 → 0c } 
 

Since  is the set of all of the roots of κ0 and given that 0 = κ0,  

 ambulates between κ0 and 1. 
 

 {  κ0 → 1 } 
 

Since  is the set of all of the roots of 0א and given that  0 = 0א,  

 ambulates between 0 א and 1. 
 

 {  1 → 0א } 
 

It has been shown that א, the set of all infinites or cardinal numbers, ambulates between 

 .the least upper bound of the infinites, and 0e, the expanded or infinite form of zero ,0א

 {  0e → 0א  } א
 

Finally, the continuum C, as a power set of its final term, ambulates between the 

undifferentiated form (0) and the differentiated forms (0c, 0e) of zero. Zero, as a whole, is 

the continuum.  
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1.16- Limits 

We can see that the definitions found in calculus for either of the limits for f(n) = 1/n, 

where n approaches zero or where n approaches infinity, would have to be changed to 

account for these new treatments of infinites and infinitesimals.   

 

Classical Calculus:     

 

  
    

1 / ∞ = 0     1 / 0 = ∞ 

 

 

There is justification for questioning these classical definitions, and replacing them with: 

 

C3 Calculus: 

 

  
 

א  / 1   = κ    1 / κ = 0 = 0 / 1      א 

 

 

The consistency of the incompleteness completes the inconsistency of the continuum 

verses the inconsistency of the completeness incompletes the consistency of the 

continuum.  

 

There is an obvious channel of pattern supporting C3 which is inherent to the interplay of 

transfinite numbers through special algebraic rules such that communicable equations can 

be derived to maintain the consistency of the structure of the argument for C3. 
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2.0- C3 and the Conventional Approach  

 

The questions facing the C3 argument are: 
 

 1. Is the sequence {0c, ,, 1, , 0 ,אe } really accountable for the continuum? 
 

2. Is {0c, ,, 1, , 0 ,אe} a masked sequence of the set of  natural or real numbers? 
 

3. Are the C3 algebraic treatments of zero, infinitesimals, and infinites sound? 
 

4. Is C3 compatible with and/or resolve issues in Non-Standard Analysis? 
 
 

C3 reasons well reworking the assumption: 
 

      into       and    
 

The cardinal number 1א is not finite nor does it have the same cardinality as 0א, and 1א has 

cardinality strictly greater than 0א, however, there is another way of treating 0א and 1א that 

reveals more about the continuum and the accountability of numbers.  

C3 is congruent with the assumption that the set of real numbers, R, is  however ,1א = 

ambulation opens another dimension to the accountability of infinite sets such as R and 

allows for an infinitude of infinites greater than R to be counted. Right away, ambulation 

diversifies the set R into R’ for more specific accountability: 
 

  
 

A more uncountable set R*, the set of all hyper-real and transfinite numbers, has the 

cardinality of אn. R* < C because as a set, R* does not ambulate and does not contain the 

differentiated forms of zero as limits. Ambulation can diversify R* into R** where: 
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The concept of ordinals is accounted for by adopting the use of ambulation with 

transfinite numbers.  The use of ordinals as position is implicitly compatible to C3. The 

uncountable set ω1, the set of all countable ordinal numbers, has a cardinality of 1א. Since 

it can be shown using the axiom of choice that it is the smallest uncountable cardinal 

number (0א being the last set of ‘countable’ numbers). The idea of a cardinal continuum 

 or infinite degrees of infinity, is deducible.  Since it is arguable, using ,(nא ,… ,2א ,1א ,0א)

C3, that though the cardinality of R is 1א and though 1א is uncountable, 1א ≠ C, and the 

cardinality of the continuum should be shown to be significantly larger than the 

cardinality of R. According to C3, the cardinality of the continuum C is the power set of 

the last term 0e, which is infinitely greater than R. Using a reverse standard parts method, 

finite numbers can be shown to be ordinals. C3 accounts for numeration from     n, n-1, 

n-1, ... , 2, 1, 0, … , 1, 2, 3, … , א , … ,2א ,1א ,0אn etc. Since ω is the ordinal associated 

with the set of natural numbers 0א, and since ω1 is associated with 1א, the compressed 

forms of 0א can be associated with the ordinals ω, ω+1, ω+2, … (ω+ ω), (ω+ ω+ ω), …, 

(ω· ω), (ω· ω· ω), etc. and the expanded forms of the cardinal number 0א can be 

associated with the ordinals ω
ω
, ε0, etc., and ω1 the set of all countable ordinals, can be 

accounted for in C3 as 1א. The sequence in C3 of א , … ,2א ,1אn accounts for the 

uncountable ordinals ω1, ω2, ω3, etc. and the set of all uncountable ordinals can be 

expressed through the relationship of אn to 0e. 

(see Appendix) 

  
 

 

2.1- Antithetical Proof 

0e is the set of all numbers, C is the power set of 0e, and C contains a member (zero) that, 

when in set form, accounts for members not found anywhere within the set 0e and are not 

numbers in any ordinary sense, namely the un-ordinals.  

 

It can easily be deduced that 0 in the un-differentiated form is an un-ordinal, given that 

treating zero algebraically can derive any value. 

 

0
0
 = 0

(1-1)
      0

0
 = 0/1 x 1/0 = 0/0 = 0 

 

0
0
 = 0

(1)
 x 0

(-1)
      0

0
 = 0/1 x 1/0 = 0/0 = 1 

 

0
0
 = 0/1 x 1/0     0

0
 = 0/1 x 1/0 = 0/0 = 2 

 

0
0
 = 0/1 x 1/0 = 0/0    0

0
 = 0/1 x 1/0 = 0/0 = 3 

 

0
0
 = 0/1 x 1/0 = 0/0 = 1   0

0
 = 0/1 x 1/0 = 0/0 = n 

 

 

If we recall, there is a continua of un-ordinals that exists for every ordinal. We can see 

this by the fact that for every correct equality, there is a continua of incorrect equalities.   
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Thus, the set of all ordinals and un-ordinals, namely C, would look something like this: 
 

 
 

What becomes apparent is that even though the set of un-ordinals is uncountable, at first, 

it appears to possibly be greater than the set of ordinals. A Cantor diagonal style proof 

can be used to show that both sets are uncountable and have the same cardinality or 

alternatively that the set of all un-ordinals has a cardinality less than that of the set of all 

ordinals. Either way, the cardinality of the powerset of the set of all ordinals is the 

continuum C. Therefore, within C3, no set larger than C has been conceived where in 

addition C is also a member thereof (set of all sets as a member of itself).   

                                (see Appendix) 
  

 
 

If we take the complete product of the set of all ordinals by multiply all members of the 

set of all ordinals together with their reciprocal members, we get a complete product of 1.  

The reason is that for every member of the set of all ordinals there exists a reciprocal 

member such that when they are all multiplied together, the complete product is 1. 
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Therefore, the set of all ordinals has a cardinality of 0e and a complete product of 1. 

 

If we consider the set of all un-ordinals, we find that though a continua of un-ordinals 

exists for every ordinal, the complete product of each continua is the reciprocal value of 

the ordinal it extends from. Therefore, it would be the case that the complete product of 

the set of all un-ordinals is also 1.  From this we can deduce that both the set of all 

ordinals and the set of all un-ordinals have the same cardinality, namely 0e. However, it 

turns out that something has not been considered and has been omitted from both sets; 

that being zero in the undifferentiated form.  

 

Let zero differentiated as reciprocal compressed and expanded forms existing at both 

extremes of the continuum exist within the set of all ordinals and let zero undifferentiated 

without a reciprocal, as its own reciprocal, exist within the non-set of all un-ordinals.  

Clearly, if there is a candidate for the non-set of un-ordinals zero would be it. 

Undifferentiated zero is an odd un-ordinal because it has no reciprocal. It becomes even 

ordinals when its compressed and expanded forms are differentiated into a reciprocal 

relationship.  

 

 Undifferentiated:   1/0 = 0        Differentiated:    1/0e = 0c 1/0c = 0e 

   

 

 

Therefore, since all the un-ordinals have a reciprocal other than zero, the complete 

product of the non-set of all un-ordinals, with the undifferentiated zero as a member, is 

zero.  So the difference between the cardinality of the set of ordinals and the set of un-

ordinals is zero; in other words, nothing. Inadvertently, this also can be used to show that 

there is no greater cardinality than C.  

 

Agains, since un-ordinals are meaningless outside the use of un-ordinals to establish the 

continuum as having the greatest possible cardinality, we have neither conceived of a set 

of all sets that contains itself as a member nor have we conceived a cardinality greater 

than C. 

 

Zero perambulates the continuum in two ways: 

 

1. Zero, whose product is any point or interval along the continuum, exists at both 

extreme ends of the continuum. 

 

2. Zero is the complete product of all ordinals and un-ordinals. 

 

The continuum is the full perambulation of zero by its proliferation of number. 

Proliferating away from zero are the very numbers that, when culminated together in the 

form of a continuum, consolidate into the value of zero. Zero comes together and makes 

number, and numbers comes together and makes zero.  
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There are three forms of zero:  
 

 0c - Compressed or common form- approaching zero from the infinitesimal side 
  

 0e - Expanded or infinite form- approaching zero from the infinite side 
  

 0 - Complex Product (super continuity)- undifferentiated zero. 

  

0e is the set of all ordinals, C is the power set of 0e and C is the set of all ordinals and the 

non-set of all un-ordinals. 

 

 the initial infinite (cardinal) number, least upper ;0א the natural numbers -{…1,2,3,4} 0א

bound of the infinites. None of the members of this set ambulate though 

the set as a whole does. 
 

R {0, ,  }- the real numbers R (or 1א), where R ranges from 0 to n and 0 to n;       

n = 1,  n = 1;     0 ≠ 0,  0 ≠ 0א;     0 > 0,  0 < 0א 
 
 

R’ {0,  ,  }- the ambulating real numbers R’ ranging from 0 to n and 0 to n;            

n = 1,  n = 1;      0 = 0,  0 = 0א;       0 ≥ 0,  0 ≤ 0א 
 

 

R*{0,  , ,1 ,  ,א }- the hyper-real numbers R*, ranging from 0 to n and 0א to אn; 

   0 ≠ n,  C ≠ אn;       0 < n< 0;   א > 0אn< C 
 

 

R**{0,  , ,1 ,  ,א }- the ambulating hyper-real numbers R**,  

   ranging from 0 to n and 0א to אn;    

    
 

0D {0c→0e}- zero in the differentiated form is the range of all numbers ambulating the 

entire continuum ranging from 0c to 0e. 

 

0U {0e→0c}- zero in the undifferentiated form is the range of all un-ordinals excluded 

from the continuum with zero range. 

 

C {{0e→0c}, {0c→0e}}- the continuum in the power set form is the differentiated and 

undifferentiated forms of zero. 

C {{0}, {0c→0e}} 
 

C {Ce→Cc}- the compressed form of the continuum Cc is 0c→0e and the expanded form 

of  the continuum Ce is 0e→0c (since from {0} all numbers extend). 

 

C [0,1]- the continuum has the complete product of zero for the set of un-ordinals and a 

complex product of one for the set of ordinals.  

 

C [0]- the continuum has a complete product of zero. 
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2.2- Compatibility of C3 with Non-Standard Analysis 

C3 is compatible with Non-Standard Analysis in very specific ways. The C3 treatment of 

infinitesimals and infinites accounts for hyper-reals consistently with the extension 

principle, the transfer principle, the real statements, and L’Hopital’s Rule with very 

specific exceptions. C3 sets a cardinal continuum of infinites and infinitesimals in 

corresponding reciprocal and algebraic relationships leading to a definition of 1/0 then 

allowing for the determination of the Indeterminate Forms. These more complete 

definitions of the role of infinites, infinitesimals, and zero clarify the “ghosts of departed 

quantities” issues that surround Δx and dx in Differentiation and Integration in Calculus 

by modifying the Standard Parts Method. The utility of C3 extends beyond the 

Continuum Hypothesis to Infinitesimal Calculus and Non-Standard Analysis seamlessly. 

 

2.3- Standard Parts Method in Differentiation 

The Standard Parts Method appears to be a slide-of-hand method.  
 

 

Solving for f’(x), where y = x
3
, we find: 

 

f’(x) = y + Δy = ( x + Δx )
 3
 

 

        = y + Δy = ( x + ) ( x + Δx ) ( x + Δx ) 

 

        = y + Δy = ( x + Δx ) (x
2
 + 2x Δx + Δx

2
) 

 

        = y + Δy =  x
3
 + 2x

2
Δx  + x Δx

2
 + x

2
Δx + 2xΔx

2
 + Δx

3
 

 

               = Δy =  -x
3
 +x

3
 + 2x

2
Δx  + x Δx

2
 + x

2
Δx + 2xΔx

2
 + Δx

3
 

 

               = Δy =  -x
3
 +x

3
 + 2x

2
Δx  + x Δx

2
 + x

2
Δx + 2xΔx

2
 + Δx

3 

 

             
 

             
 

Using the Standard Parts Method, we would: 
 

 
 

                     =       3x
2     

+          0        +        0 
 

                     =  3x
2
 

 

Taking the Standard Part of a finite hyper-real number such as 3xΔx, where 3xΔx is an 

infinitesimal and where the Standard Part of an infinitesimal is 0, does not address the 

issue of how we transition from an infinitesimal increment Δx to 0 and how this is done 

without having to define 1/0 or allow for Δx = 0. In this way, the Standard Parts method 
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is more like a selective reasoning or slide-of-hand, moving right along, using an ignore-

the-issue-at-hand type method. “What is Δx and how do we reduce it to zero without 

violating fundamental principles of arithmetic?”- is the question that is not being 

addressed by Non-Standard Analysis in its application of the Standard Parts Method with 

Differentiation. 

 

2.4- Standard Parts Method in Integration 

In integration, a series of rectangles are used to approximate the area under a curve. The 

width of these rectangles is reduced to smaller and smaller increments until they are 

infinitesimally wide. Then an infinites series of infinitesimally wide rectangles are 

summed together to give an exact value of area under the curve.  
 

  
 

Two different sets of inequalities are used, an over estimate and an under estimate of A, 

that, as the widths of the rectangles tends towards zero and the number of them tends 

towards infinity. Then at the limit, the over and under estimate tend towards equaling the 

same value; namely A. 

 

Example: 
 

Find the area from x = 0 to x = a for the curve y = x
2
. 

 

  
 

Let a/n equal the width of n equally thin rectangles under the curve f(x). For some 

intermediate rectangle r, as an over estimate: 
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The area of rectangle r equals the base times the height relative to the highest point of 

rectangle r along f(x), which is: 
 
 

  
 

As an underestimate:  
 

 

  
 

 
 

The area of rectangle r equals the base times the height relative to the lowest point of 

rectangle r along f(x), which is: 

 

 

  
 

Setting these two different estimates for the area of rectangle r as inequalities in a single 

equation, and using a series of rectangles to approximate the area under a curve, as the 

number of rectangle in the series approaches infinity the width of the rectangles tends 

towards zero trapping the value for the area between to equal limits.  
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Solving the summations of the two series for the over and under estimates, we find: 

 

  
 

Substituting (n-1) from the second series for n from the first series, we get: 

 

  
 

Substituting into the inequalities we get: 

 

  
 

  
 

As n increases, the width of the rectangles gets smaller and as n approaches infinity, the 

widths tend towards zero. Using the Standard Parts method, we get: 
 

  

This is consistent, showing that the definite integral is equivalent with the anti-derivative, 

however, it again gives no reasoning for how this is done without defining 1/0.  



 45 

2.5- Failure of the Standard Parts Method  

Not only does the Standard Parts Method not explain how it avoids defining 1/0 though 

inadvertently using it, in this next example, it actually fails in defining the definite 

integral when looked at properly. Something else is going on within the Standard Parts 

method that the current definition of the process doesn’t account for but is somehow dealt 

with in its underlying application. 

 

 

 
 

  
 

  

The upper region B symmetrically has the same area as A. The Riemann sum, being a 

sum of a series of infinitesimally thin rectangles, has an infinitesimally small error with 

area E. Hence, the area of A plus the area of B plus the area of E = b2. Each partition of E 

has a base of dx and a height of dx where the last term may be smaller than dx. 

 

 0 ≤ area of E ≤  bdx   

 

Solving for A: 
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Since dx tends towards zero, bdx tends towards zero too, and in this way, E, or the error, 

is eliminated. 

  

  
However, this comes at a price: what about xdx? Doesn’t it zero out too? It could be 

argued that xdx is different from bdx given that the “x” in xdx is a dummy variable used 

representing the summation of a series of “x’s”, but this only drives the point further. 
 

 

  
 

 
 

Since bdx is infinitesimal, if dx is the width of each rectangle, and dx goes to zero, then 

not only does the width of each rectangle goes to zero but so does the integral area. 
 

 

 
 

 

Something has to be happening in the ‘inner workings’ of the Standard Parts method in 

order to yield the correct answer: 
 

  
 

In examining these subtle problems with using the Standard Parts method in order to 

resolve the issues of the infinitesimals Δx and dx in Differentiation and Integration, C3 

offers a comprehensive solution to the problem at hand that preserves the usability of the 

Standard Parts method and extends its utility into determining the Indeterminate Forms.  

 

 

2.6- Determining the Indeterminate Forms 

Indeterminate Forms exhibit ambulation. At first glace, some indeterminate forms lead to 

conclusions such as 0/0, however, some can be evaluated by an alternative method using 

L’Hôpital’s rule and give definite answers. This yielding of a range of answers is exactly 

what we find in C3 as ambulation. Other Indeterminate Forms such as ∞/∞, 0
0
, ∞

0
, 1

∞
,   

∞ - ∞, and 0∙∞, through the use of ambulation, can also be transformed into ambulating 

determinate forms. Consequentially and as will be demonstrated, the Standard Parts 
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method and ambulation turn out to be two aspects of the same approach. Where taking 

the standard parts allows for treating hyperreals algebraically, ambulation allows for the 

precise definition of hyperreals allowing C3 to use them algebraically. Therefore, a closer 

examination at the utility of ambulation in C3 for determining the indeterminate forms 

will shed light on the C3 interpretation of the Standard Part method. 
 

For the indeterminate form 0/0, let the differentiated forms of zero be used to determine 

the range of values for 0/0. 

 
 

  
 

 

Therefore, depending on the differentiated forms of zero, 0/0 has the continuum as a 

range of answers with the exception of 0/0 in the undifferentiated form of zero, which has 

only one answer: 0.  
 

  
 

For the indeterminate form ∞/∞, let ∞ equal א, for any given א. Hence, for any /אא , so 

long as the א in the numerator and the א in the denominator are equal, 1 = א/א.  
 

  
 

Also, when 1 > א/א or 1 < א/א, corresponding values can be determined (please see 

definitions of the reciprocal relationships between infinites and infinitesimals) such as: 
 

  
 

For the indeterminate form 0
0
, let the differentiated forms of zero be used to determine 

the range of values for 0
0
. 

 

  
 

Using these we can derive: 
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(see Appendix) 

For the indeterminate form 1
∞
, since 1

0
 = 1 and since zero exists at both ends of the 

continuum, i.e. zero is the continuum, 1
∞
 = 1. 

 

  
 

From this we get: 

 

  
 

The indeterminate forms ∞ - ∞ and 0∙∞ are resolved by previously mentioned references 

to the reciprocal relationships and algebraic treatments of infinites and infinitesimals in 

C3 through the use of ambulation transforming them into determinate forms. 

 

 

2.7- C3 and Differentiation 

Returning to the issue regarding taking the standard parts as the final step in 

Differentiation, we find: 

 

  
 

                                =       3x
2     

+          0        +        0 

 

                               =  3x
2
 

 

If we let Δx = κn, and given that κn = ε, which is the initial increment and since κn 

subambulates to equal 0c, 3xΔx and Δx
2
 can be reduced to zero without any mystery and 

Δx = 0c can happen without violating the rules of arithmetic with C3 cleaning up the 

definition of the Standard Parts method.  Let:  

 

 

  
 

The total change in x, or the total subambulation of κn, equals the sum of the final change 

in x and the initial change in x.  
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 Total change in x = Final change in x + Initial change in x 

 

 xt = xf + xi 

 

 

Since the final change in x subambulates to zero, xf = - ε.  

 

  
 

Please notice that in the C3 approach to Differentiation, it is the “subambulation” of the 

infinitesimal that reduces Δx to zero, not just some arbitrary wave of the Standard Parts 

hand.  

 

The C3 approach to differentiation applies subambulation to the infinitesimal Δx taking 

into consideration the differentiated form of zero 0c. 

 

 

2.8- C3 and Integration 

When applying the limit to the infinite Riemann of the series of partitions of sub-intervals 

as a function of x, we end up with an infinite summation of infinitesimal increments.  

 

  
 

 

Referring back to the C3 treatment of the binomial , which yields an infinite 

summation of infinitesimal increments that perambulates over a range, specifically when 

treated as applied in 1.6 - 1.8: 
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The expanded additions of κn equals one, where the number of partitions is inversely 

proportional to the width of the partitions, and no error remains. Now we have a means of 

legitimately eliminating area E without losing xdx in the process. 
 

 

So for bdx: 

 

  
 

 

 

Now, using perambulation to account for the Standard Parts method in deriving the 

definite integral for the infinite Riemann sum, we find: 
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Since dx is a dummy variable like x in this case and since they both are place holders for 

the summation of the partitions from 0 to b, given that the partitions are infinitesimally 

thin approaching zero, taking into account the infinite number of partitions that are 

proportional to the width of the partitions, as the infinitesimal width of a partition equals 

0c the infinite number of partitions equals 0e.  

 

  
 

 

Since 0c ∙ 0e = 1, the summation of dx, which is the expanded additions of κn that 

perambulates to equal one,  preserves the function of x defining the definite integral.  

 

Please notice that in the C3 approach to Integration, it is the “perambulation” of the 

infinitesimal that increases the ‘dummy’ dx status from zero to one. 

 

Therefore, the C3 approach to Integration first applies subambulation to the dx times the 

error, and second perambulation to the infinitesimal dx taking into consideration the 

differentiated forms of zero, 0c and 0e.  
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